Rapid Removal of Zinc(II) from Aqueous Solutions Using a Mesoporous Activated Carbon Prepared from Agricultural Waste

نویسندگان

  • Xiaotao Zhang
  • Yinan Hao
  • Ximing Wang
  • Zhangjing Chen
چکیده

A low-cost activated carbon (XSBLAC) prepared from XanthocerasSorbifoliaBungehull via chemical activation was investigated to determine its adsorption and desorption properties for zinc(II) ions from aqueous solutions. XSBLAC was characterized based on its N₂-adsorption/desorption isotherm, EDX, XRD, SEM and FTIR results. An adsorption study was conducted in a series of experiments to optimize the process variables for zinc(II) removal using XSBLAC. Modeling the adsorption kinetics indicated good agreement between the experimental data and the pseudo-second-order kinetic model. The Langmuir equilibrium isotherm fit the experimental data reasonably well. The calculated enthalpy (ΔH⁰), entropy (ΔS⁰) and Gibbs free energy (ΔG⁰) values revealed the endothermic and spontaneous nature of the adsorption process. HNO₃ displayed the best desorption performance. The adsorption mechanism was investigated in detail through FTIR and SEM/EDX spectroscopic analyses. The results suggested that XSBLAC is a potential biosorbent for removing zinc(II) from aqueous solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorption of Copper (II) Ions from Aqueous Solution onto Activated Carbon Prepared from Cane Papyrus

The present study evaluates the suitability ofactivated carbon, prepared from Cane Papyrus, a plant that grows naturally and can be found quite easily, which serves as a biological sorbent for removal of  Cu2+ ions from aqueous solutions. Fourier transform infra-red analysis for the activated carbon, prepared fromCane Papyrus confirms the presence of amino (–NH), carbonyl (–C=O), and hydroxyl (...

متن کامل

Adsorption of Copper (II) Ions from Aqueous Solution onto Activated Carbon Prepared from Cane Papyrus

The present study evaluates the suitability ofactivated carbon, prepared from Cane Papyrus, a plant that grows naturally and can be found quite easily, which serves as a biological sorbent for removal of  Cu2+ ions from aqueous solutions. Fourier transform infra-red analysis for the activated carbon, prepared fromCane Papyrus confirms the presence of amino (–NH), carbonyl (–C=O), and hydroxyl (...

متن کامل

Sorption of Cu(II), Zn(II) and Ni(II) from aqueous solution using activated carbon prepared from olive stone waste

The performance of olive stone activated carbon (OSAC) for sorption of Cu2+, Zn2+ and Ni2+ ions was investigated via batch technique. OSAC materials were prepared under different physially activation conditions. Olive stone waste was physically activated with N2 gas and steam gas at 900oC at 3.5h hold time (OSAC-3) was choice as the best one for Cu2+, Zn2+ and Ni2+ removal. Characterization for...

متن کامل

Acid Dyes Removal from textile wastewater using waste cotton activated carbon: Kinetic, isotherm, and thermodynamic studies

The present study aims at investigating the potential of activated carbon AC prepared from waste cotton fiber for the removal of Acid Dyes from aqueous solutions. The prepared activated carbon was characterized by pore structure analysis, Fourier transforms infrared spectroscopy FTIR. Batch adsorption studies were carried out and the effect of experimental parameters such as pH, initial dye con...

متن کامل

Removal of Cadmium from Aqueous Solutions by a Synthesized Activated Carbon

Introduction: There are different methods for removal of cadmium from aqueous solutions. Adsorption based methods are among the bests. One of the most important aspects for adsorption techniques is the availability of an accessible and economical adsorbent. This study aims to investigate cadmium removal from aqueous solutions by walnuts shell waste. Materials and Methods: Walnut Shell (WS) was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017